1. Which of the following is the first integral of the Euler-Lagrange equations if the integrand is of the form F(y(x), y'(x))?

a) F = constantb) $y'F_{y'} = \text{constant}$ c) $F - y'F_{y'} = \text{constant}$ d) $F_{y'} - Fy' = 0$

2. Which of the following is a first integral that can be used to solve the Brachistochrone problem easily? (Note : C is an arbitrary constant)

a)
$$F - y' F_{y'} = C$$

b) $F - y' F_{y'} = 0$
c) $F - y' F_{y'} + y'' F_{y''} = C$
d) $F - y' F_{y'} + y'' F_{y''} = 0$

3. The action integral for a vibrating string is $A = \int_{t_1}^{t_2} \int_{0}^{L} (\frac{1}{2}\rho \dot{w}^2 - \frac{1}{2}Tw'^2) dx dt$. Which one of

the following statements is false?

- a) Term 1 in the integrand is due to the kinetic energy of the string.
- b) $\frac{1}{2}w'^2$ is the approximated extension in the string due to tension.
- c) Sign of Term 2 in the integrand should be positive instead of negative in the action integral.
- d) Term 2 is due to the strain energy in the string.
- 4. Which of the following should be minimized to find eigenvalue of a vibrating string?
 - a. Strain energy
 - b. Work potential
 - c. Rayleigh's quotient
 - d. Potential Energy

5. Which of the following is/are true in view of the minimum characterization of an eigenvalue problem?

- A. In the vicinity of an eigenvalue, Rayleigh quotient is always less than or equal to it.
- B. In the vicinity of an eigenvalue, Rayleigh quotient is always greater than or equal to it.

- C. Minimum characterization of eigenvalue problem can determine eigenvalues but not mode shapes.
- a) A,C
- b) B,C
- c) A
- d) B

6. Noether's theorem in calculus of variations helps us to...

- a) find the invariant co-ordinate transformations of an action integral.
- b) simplify the minimization problem by easily solving Euler-Lagrange equation.
- c) find the conserved quantities in a system.
- d) All of the above

7. Rayleigh quotient for column buckling is

a)
$$\int_{0}^{L} EIw'^{2} dx$$
$$\int_{0}^{L} w'^{2} dx$$
b)
$$\int_{0}^{L} EIw'^{2} dx$$
$$\int_{0}^{L} w'^{2} dx$$
c)
$$\int_{0}^{L} EIw''^{2} dx$$
$$\int_{0}^{L} w''^{2} dx$$

d) None of the above

8. Consider a particle of mass *m* moving in dimension under gravity *g* from time t_1 to t_2 . Which of the following is the action integral/Hamilton of the system? Take position of the particle to be *q*, velocity to be \dot{q} and *t* to be time.

a)
$$\int_{t_1}^{t_2} \frac{1}{2} m \dot{q}^2 dt$$

b) $\int_{t_1}^{t_2} mgqdt$
c) $\int_{t_1}^{t_2} (\frac{1}{2} m \dot{q}^2 - mgq) dt$

d)
$$\int_{t_1}^{t_2} (\frac{1}{2}m\dot{q}^2 + mgq)dt$$

9. Check if the action integral obtained in the Question 8 is invariant under the two coordinate transformations :

1.
$$\frac{\overline{t} = t + \varepsilon_1}{\overline{q} = q}$$
2.
$$\frac{\widehat{t} = t}{\widehat{q} = q + \varepsilon_2}$$

- a) Invariant under transformation 1 but not 2
- b) Invariant under transformation 2 but not1
- c) Invariant under transformations 1 and 2
- d) Not invariant under transformations 1 and 2

10. If at least one of the coordinate transformations in Question 9 is invariant, use Noether's theorem to find out the symmetry/symmetries in the system and select the appropriate option from the following.

- a. Only energy
- b. Only linear momentum
- c. Energy and linear momentum
- d. None